## **Building a Case Against Ozone**

## by Patrick Barry

When it comes to notorious greenhouse gases, carbon dioxide is like Al Capone—always in the headlines. Meanwhile, ozone is more like Carlo Gambino—not as famous or as powerful, but still a big player.

After tracking this lesser-known climate culprit for years, NASA's Tropospheric Emission Spectrometer (TES) has found that ozone is indeed a shifty character. Data from TES show that the amount of ozone—and thus its contribution to the greenhouse effect—varies greatly from place to place and over time.

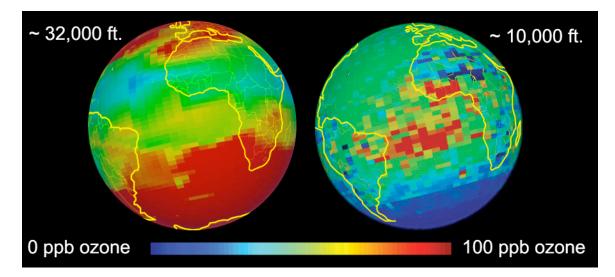
"Ozone tends to be localized near cities where ozone precursors, such as car exhaust and power plant exhaust, are emitted," says Kevin Bowman, a senior member of the TES technical staff at the Jet Propulsion Laboratory. But the ozone doesn't necessarily stay in one place. Winds can stretch the ozone into long plumes. "Looking out over the ocean we can see ozone being transported long distances over open water."

Unlike  $CO_2$ , ozone is highly reactive. It survives in the atmosphere for only a few hours or a few days before it degrades and effectively disappears. So ozone doesn't have time to spread out evenly in the atmosphere the way that  $CO_2$  does. The amount of ozone in one place depends on where ozone-creating chemicals, such as the nitrogen oxides in car exhaust. are being released and which way the wind blows.

This short lifespan also means that ozone could be easier than CO<sub>2</sub> to knock off.

"If you reduce emissions of things that generate ozone, then you can have a quicker climate effect than you would with CO<sub>2</sub>," Bowman says. "From a policy standpoint, there's been a lot of conversation lately about regulating short-lived species like ozone."

To be clear, Bowman isn't talking about the famous "ozone layer." Ozone in this highaltitude layer shields us from harmful ultraviolet light, so protecting that layer is crucial. Bowman is talking about ozone closer to the ground, so-called tropospheric ozone. This "other" ozone at lower altitudes poses health risks for people and acts as a potent greenhouse gas.


TES is helping scientists track the creation and movement of low-altitude ozone over the whole planet each day. "We can see it clearly in our data," Bowman says. Countries will need this kind of data if they decide to go after the heat-trapping gas.

Ozone has been caught red-handed, and TES is giving authorities the hard evidence they need to prosecute the case.

Learn more about TES and its atmospheric science mission at tes.jpl.nasa.gov. The Space Place has a fun "Gummy Greenhouse Gases" activity for kids that will introduce them to

the idea of atoms and molecules. Check it out at spaceplace.nasa.gov/en/kids/tes/gumdrops.

*This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.* 



Caption:

These images are TES ozone plots viewed with Google Earth. Colors map to tropospheric ozone concentrations. The image on the left shows ozone concentrations at an altitude of approximately 32,000 feet, while the one on the right shows ozone at approximately 10,000 feet. The measurements are monthly averages over each grid segment for December 2004.

You can download this image from <u>http://spaceplace.nasa.gov/news\_images/local\_ozone.jpg</u>