Sunglasses for a Solar Observatory

By Patrick Barry

In December 2006, an enormous solar flare erupted on the Sun's surface. The blast hurled a billion-ton cloud of gas (a coronal mass ejection, or CME) toward Earth and sparked days of intense geomagnetic activity with Northern Lights appearing across much of the United States.

While sky watchers enjoyed the show from Earth's surface, something ironic was happening in Earth orbit.

At the onset of the storm, the solar flare unleashed an intense pulse of X-rays. The flash blinded the Solar X-Ray Imager (SXI) on NOAA's GOES-13 satellite, damaging several rows of pixels. SXI was designed to monitor solar flares, but it must also be able to protect itself in extreme cases.

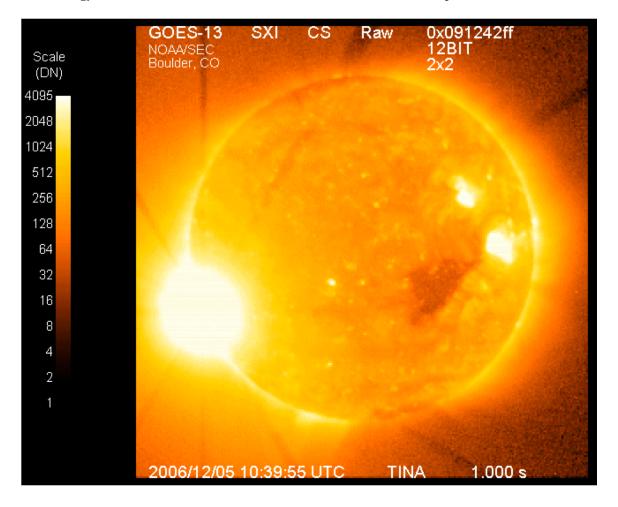
That's why NASA engineers gave the newest Geostationary Operational Environmental Satellite a new set of sophisticated "sunglasses." The new GOES-14 launched June 27 and reached geosynchronous orbit July 8.

Its "sunglasses" are a new flight-software package that will enable the SXI sensor to observe even intense solar flares safely. Radiation from these largest flares can endanger military and civilian communications satellites, threaten astronauts in orbit, and even knock out cities' power grids. SXI serves as an early warning system for these flares and helps scientists better understand what causes them.

"We wanted to protect the sensor from overexposure, but we didn't want to shield it so much that it couldn't gather data when a flare is occurring," says Cynthia Tanner, SXI instrument systems manager for the GOES-NOP series at NASA's Goddard Space Flight Center in Greenbelt, Maryland. (GOES-14 was called GOES-O before achieving orbit).

Shielding the sensor from X-rays also reduces the amount of data it can gather about the flare. It's like stargazing with dark sunglasses on. So NASA engineers must strike a balance between protecting the sensor and gathering useful data.

When a dangerous flare occurs, the new SXI sensor can protect itself with five levels of gradually "darker" sunglasses. Each level is a combination of filters and exposure times carefully calibrated to control the sensor's exposure to harmful high-energy X-rays.


As the blast of X-rays from a major solar flare swells, GOES-14 can step up the protection for SXI through these five levels. The damaged sensor on GOES-13 had only two levels of protection—low and high. Rather than gradually increasing the amount of protection, the older sensor would remain at the low level of protection, switching to the high level only when the X-ray dose was very high.

"You can collect more science while you're going up through the levels of protection," Tanner says. "We've really fine-tuned it."

Forecasters anticipate a new solar maximum in 2012-2013, with plenty of sunspots and even more solar flares. "GOES-14 is ready," says Tanner.

For a great kid-level explanation of solar "indigestion" and space weather, check out spaceplace.nasa.gov/en/kids/goes/spaceweather.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Caption:

X-9 class solar flare December 6, 2006, as seen by GOES-13's Solar X-ray Imager. It was one of the strongest flares in the past 30 years.

This image may be downloaded from http://spaceplace.nasa.gov/news_images/goes-13-sxi.jpg.