Death of a Supergiant

By all outward appearances, the red supergiant appeared normal. But below the surface, hidden from probing eyes, its core had already collapsed into an ultra-dense neutron star, sending a shock wave racing outward from the star's center at around 50 million kilometers per hour.

The shock wave superheated the plasma in its path to almost a million degrees Kelvin, causing the star to emit high-energy ultraviolet (UV) radiation. About six hours later, the shock wave reached the star's surface, causing it to explode in a Type IIP supernova named SNLS-04D2dc.

Long before the explosion's visible light was detected by telescopes on Earth, NASA's Galaxy Evolution Explorer (GALEX) space telescope captured the earlier pulse of UV light — scientists' first glimpse of a star entering its death throes.

"This UV light has traveled through the star at the moment of its death but before it was blown apart," explains Kevin Schawinski, the University of Oxford astrophysicist who led the observation. "So this light encodes some information about the state of the star the moment it died."

And that's exactly why astronomers are so excited. Observing the beautiful nebula left behind by a supernova doesn't reveal much about what the star was like before it exploded; most of the evidence has been obliterated. Information encoded in these UV "pre-flashes" could offer scientists an unprecedented window into the innards of stars on the verge of exploding.

In this case, Schawinski and his colleagues calculated that just before its death, the star was 500 to 1000 times larger in diameter than our sun, confirming that the star was in fact a red supergiant. "We've been able to tell you the size of a star that died in a galaxy several billion light-years away," Schawinski marvels.

"GALEX has played a very important role in actually seeing this for a few reasons," Schawinski says. First, GALEX is a space telescope, so it can see far-UV light that's blocked by Earth's atmosphere.

Also, GALEX is designed to take a broad view of the sky. Its relatively small 20-inch primary mirror gives it a wide, 1.2-degree field of view, making it more likely to catch the UV flash preceding a supernova.

With these advantages, GALEX is uniquely equipped to catch a supernova before it explodes. "Just when we like to see it," Schawinski says.

For more information, visit <u>www.galex.caltech.edu</u>, "Ultraviolet Gives View Inside Real 'Death Star'." Kids can check out how to make a mobile of glittering galaxies at spaceplace.nasa.gov/en/kids/galex_make1.shtml.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Caption:

Sequence of images shows supernova start to finish. The top left image shows the galaxy before the supernova. At top right, the bright UV flash called the shock breakout indicates a red supergiant has collapsed. At bottom left, moments later, the flash is mostly gone. As the debris expands, it heats up again and becomes brighter (bottom right). The supernova became 10 times the size of the original over the following few days, thus becoming visible to supernova hunters.

This image may be downloaded from spaceplace.nasa.gov/news_images/supernova_uv.jpg.