No Mars Rock Unturned

by Patrick L. Barry

Imagine someday taking a driving tour of the surface of Mars. You trail-blaze across a dusty valley floor, looking in amazement at the rocky, orange-brown hillsides and mountains all around. With each passing meter, you spy bizarre-looking rocks that no human has ever seen, and may never see again. Are they meteorites or bits of Martian crust? They beg to be photographed.

But on this tour, you can't whip out your camera and take on-the-spot close-ups of an especially interesting-looking rock. You have to wait for orders from headquarters back on Earth, and those orders won't arrive until tomorrow. By then, you probably will have passed the rock by. How frustrating!

That's essentially the predicament of the Spirit and Opportunity rovers, which are currently in their fourth year of exploring Mars. Mission scientists must wait overnight for the day's data to download from the rovers, and the rovers can't take high-res pictures of interesting rocks without explicit instructions to do so.

However, artificial intelligence software developed at JPL could soon turn the rovers into more-autonomous shutterbugs.

This software, called Autonomous Exploration for Gathering Increased Science (AEGIS), would search for interesting or unusual rocks using the rovers' low-resolution, black-and-white navigational cameras. Then, without waiting for instructions from Earth, AEGIS could direct the rovers' high-resolution cameras, spectrometers, and thermal imagers to gather data about the rocks of interest.

"Using AEGIS, the rovers could get science data that they would otherwise miss," says Rebecca Castaño, leader of the AEGIS project at JPL. The software builds on artificial intelligence technologies pioneered by NASA's Earth Observing-1 satellite (EO-1), one of a series of technology-testbed satellites developed by NASA's New Millennium Program.

AEGIS identifies a rock as being interesting in one of two ways. Mission scientists can program AEGIS to look for rocks with certain traits, such as smoothness or roughness, bright or dark surfaces, or shapes that are rounded or flat.

In addition, AEGIS can single out rocks simply because they look unusual, which often means the rocks could tell scientists something new about Mars's present and past.

The software has been thoroughly tested, Castaño says, and now it must be integrated and tested with other flight software, then uploaded to the rovers on Mars. Once installed, she hopes, Spirit and Opportunity will leave no good Mars rock unturned.

Check out other ways that the Mars Rovers have been upgraded with artificial intelligence software at nmp/TECHNOLOGY/infusion.html#sciencecraft.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Caption:

Are these rocks of any scientific interest? With the new AEGIS software, the Mars Rovers, Spirit and Opportunity, will be able to judge for themselves whether a scene is worth a high-resolution image. (Artist's rendering.)